With the new guidelines for high blood pressure popping up all over the news recently, we may wonder what we need to know when this comes up in our A&P classrooms. And we know it will—students love, love, love to connect what they are learning in A&P ...

Your copy of the latest newsletter from The A&P Professor!

Here are The A&P Professor headlines for you. Click here to start your FREE subscription

The A&P Professor

5 new articles


Got High Blood Pressure Covered? The 2017 Hypertension Guidelines.

With the new guidelines for high blood pressure popping up all over the news recently, we may wonder what we need to know when this comes up in our A&P classrooms. And we know it will—students love, love, love to connect what they are learning in A&P with what they are experiencing in their lives. 

It turns out that although the new 2017 Guideline For the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults is focused on how physicians should make diagnoses and manage patient care, the definitions of exactly what constitutes high blood pressure (hypertension or HTN) are important learning points in the undergrad A&P course.

I'll outline the main things for us A&P professors to know here, but do check out the resources I've linked below to deepen your understanding of current thinking regarding approaches to blood pressure (BP) health.

First, there are revised guidelines as to what constitutes high blood pressure or HTN:

  • Normal BP: Less than 120/80 mm Hg;
  • Elevated BP: Systolic between 120-129 and diastolic less than 80;
  • Stage 1 HTN: Systolic between 130-139 or diastolic between 80-89;
  • Stage 2 HTN: Systolic at least 140 or diastolic at least 90 mm Hg;
  • Hypertensive crisis: Systolic over 180 and/or diastolic over 120, with patients needing prompt changes in medication if there are no other indications of problems, or immediate hospitalization if there are signs of organ damage.

Regardless of the precise cutoffs listed above, in an interview discussing the new guidelines, the main author states that, "120/80 is normal, the same as we had before" the new guidelines. So I think we're safe in using 120/80 as an example of BP when discussing the normal science, even though technically it could be designated as "elevated." Not that we can't use an elevated variable measurement as an example when discussing the physiology of anything. The fact that even the main author of the guidelines uses 120/80 as the starting point of discussion makes me feel more confident in using it as the starting point of my course discussions, too.

The main thing to note in the categories above is that the cutoffs for HTN categories have been lowered. This puts many more people in an HTN category that were not there before. The main goal is for those folks to have conversations with their physicians to evaluate their risk for complications and develop a personalized prevention and care plan.

Note also that the category of prehypertension has been eliminated.

The new guidelines also recommend prescribing medication for Stage 1 HTN if the patient already had a cardiovascular event—or is at a high risk for such an event. They also recognize that many patients will need more than one medication to manage BP and that combining meds into one pill is likely to help folks take them consistently.

There are a lot of other recommendations, so reviewing the Executive Summary or similar resource (see below) may be a good idea.


What can we use from this in teaching undergraduate A&P?

  • If you discuss hypertension, or use case studies in teaching, you need to update the cutoff BPs you are using.
  • A BP of 120/80 is still considered the starting point for discussing blood pressure.
  • Consider discussing the impact of the changes in the new guidelines for ordinary people.
  • Discuss why such diagnosis, prevention, and treatment recommendations often change over time. Consider discussion other recent clinical updates.
  • Consider discussing specific changes suggested in the new guidelines.
  • Consider having students explore the Executive Summary and/or other documents and write their own summary or interpretation of key points. Perhaps they can create their own chart or concept map.

Need some free teaching materials?

SLIDE SET: High Blood Pressure
  • Kevin Patton. Lion Den Slide Collection. 18 Nov 2017
  • Small slide deck that includes an animated version of the BP Category chart pictured above. Part of the Lion Den Slide Collection (requires free registration to download). You can also download a static PNG image file of the chart in the slide collection set.
  • my-ap.us/2ivoql5

VIDEO: AHA 2017 | New High Blood Pressure Guidelines
  • America Heart Association. 13 Nov 2017.
  • Free video (viewable in the player above) features a chat with the main author of the new guidelines and summarizes the main points. Very practical and easy to understand.
  • youtu.be/rvYL-7ergDs

SLIDE SET: 2017 Guideline For the Prevention, Detection, Evaluation and Management of High Blood Pressure in Adults
  • American College of Cardiology. 13 Nov 2017
  • Free set of almost 100 PowerPoint slides to use in teaching. And it has a decided focus on clinical applications, rather than the basic science. These are way, way beyond the coverage desirable in an undergrad A&P course. But some slides may be useful to you.
  • my-ap.us/2itMBjY

Want to know more?

New blood pressure guidelines put half of U.S. adults in unhealthy range
  • A. Cunningham Science News. 13 Nov 2017 
  • Plain-English article summarizing the first major update since 2003 aims to spur heart-healthy lifestyle changes. Has a useful graph and links to other articles and resources.
  • my-ap.us/2itVnOR

New Multisociety Hypertension Guideline Is Released
  • Allan S. Brett, MD reviewing Whelton PK et al. J Am Coll Cardiol 2017 Nov 13. NEJM Journal Watch Nov 2017.
  • Brief review of the larger report (listed below), summarize key take-away points.
  • my-ap.us/2iumCc1

2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary
A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines
  • PK Whelton et al. Hypertension, Dec 2017, Volume 70, Issue 6.  DOI: 10.1161/HYP.0000000000000066
  • Free PDF of the Executive Summary of the larger report. I recommend reading this first, then decide if you need to read the whole report.
  • my-ap.us/2iuzvCT

2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults
A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines
  • PK Whelton et al. Hypertension. Dec 2017, Volume 70, Issue 6.  DOI: 10.1161/HYP.0000000000000065
  • Free PDF of the entire report. It's huge, so make a whole pot of tea before starting it.
  • my-ap.us/2irTUZj

Potential U.S. Population Impact of the 2017 American College of Cardiology/American Heart Association High Blood Pressure Guideline
  • Paul Muntner et al. Journal of the American College of Cardiology. November 2017. DOI: 10.1016/j.jacc.2017.10.073
  • Free abstract briefly outlines the impact of the new HTN guidelines.
  • my-ap.us/2iu8BLi


Biomolecule Imaging Pioneers Share Nobel Prize

Today, the Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Chemistry 2017 to Jacques Dubochet (University of Lausanne, Switzerland) and Joachim Frank (Columbia University, New York, USA), and Richard Henderson (MRC Laboratory of Molecular Biology, Cambridge, UK). The award is given "for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution"

Cool microscope technology revolutionises biochemistry

We may soon have detailed images of life’s complex machineries in atomic resolution. The Nobel Prize in Chemistry 2017 is awarded to Jacques Dubochet, Joachim Frank and Richard Henderson for the development of cryo-electron microscopy, which both simplifies and improves the imaging of biomolecules. This method has moved biochemistry into a new era.

A picture is a key to understanding. Scientific breakthroughs often build upon the successful visualization of objects invisible to the human eye. However, biochemical maps have long been filled with blank spaces because the available technology has had difficulty generating images of much of life’s molecular machinery. Cryo-electron microscopy changes all of this. Researchers can now freeze biomolecules mid-movement and visualize processes they have never previously seen, which is decisive for both the basic understanding of life’s chemistry and for the development of pharmaceuticals.

Electron microscopes were long believed to only be suitable for imaging dead matter, because the powerful electron beam destroys biological material. But in 1990, Richard Henderson succeeded in using an electron microscope to generate a three-dimensional image of a protein at atomic resolution. This breakthrough proved the technology’s potential.

Joachim Frank made the technology generally applicable. Between 1975 and 1986 he developed an image processing method in which the electron microscope’s fuzzy two-dimensional images are analysed and merged to reveal a sharp three-dimensional structure.

Jacques Dubochet added water to electron microscopy. Liquid water evaporates in the electron microscope’s vacuum, which makes the biomolecules collapse. In the early 1980s, Dubochet succeeded in vitrifying water – he cooled water so rapidly that it solidified in its liquid form around a biological sample, allowing the biomolecules to retain their natural shape even in a vacuum.

Following these discoveries, the electron microscope’s every nut and bolt have been optimised. The desired atomic resolution was reached in 2013, and researchers can now routinely produce three-dimensional structures of biomolecules. In the past few years, scientific literature has been filled with images of everything from proteins that cause antibiotic resistance, to the surface of the Zika virus. Biochemistry is now facing an explosive development and is all set for an exciting future.

About the Nobel Laureates

Jacques Dubochet, born 1942 in Aigle, Switzerland. Ph.D. 1973, University of Geneva and University of Basel, Switzerland. Honorary Professor of Biophysics, University of Lausanne, Switzerland.

Joachim Frank, born 1940 in Siegen, Germany. Ph.D. 1970, Technical University of Munich, Germany. Professor of Biochemistry and Molecular Biophysics and of Biological Sciences, Columbia University, New York, USA.

Richard Henderson, born 1945 in Edinburgh, Scotland. Ph.D. 1969, Cambridge University, UK. Programme Leader, MRC Laboratory of Molecular Biology, Cambridge, UK.

What can we use from this in teaching undergraduate A&P?

  • If you talk about imaging molecules in your course, this could be a way to garner student interest—considering that this is a current and ongoing effort in science. I always have a brief "shape is important in biological chemistry and here's what we can see with current tools" because they're going to see all those little odd-shaped rutabaga blobs in illustrations in their textbooks.

  • If you bring up microscopy in your course, perhaps describing the types of microscopy, adding a bit of info on this could help show students that microscopy is still evolving—in exciting ways.

  • Consider using the annual Nobel Prize announcements as a springboard to discuss the process of scientific discovery. 

  • Consider mentioning the other major awards for scientific achievement and discuss what the judges seem to value most about scientific discoveries. The Nobel Prize is the one everyone has heard of, so it's a great place to start.

  • Use the Nobel Prizes (and other awards) over time as a way to keep students aware of the history of, and progress, of human biology. One could also address the global diversity of laureates.  Or the lack of other kinds of diversity among laureates.

Want to know more?

Popular Information 

Scientific Background


Image - 3D structures (pdf 1.4 MB)

Image - Blobology (pdf 8.5 MB)

Image - Dubochet's preparation method (948 kB)

Image - Frank's image analysis (pdf 1 MB)

Cool Animations (literally)

Structure and gating of the nuclear pore complex

Ion gating in the sarcoplasmic reticulum membrane

Antibody structure

Native LDL particles
  • Kumar V, Butcher S, Öörni K, Engelhardt P, Heikkonen J, Kaski K, Ala-Korpela M, Kovanen P
  • my-ap.us/2hO4Qms

Changes in the water and ion contents of organelles during apoptosis
  • Nolin F, Michel J, Wortham L, Tchelidze P, Banchet V, Lalun N, Terryn C, Ploton D
  • my-ap.us/2hMTYW4
Adapted from press release at nobelprize.org
Click each image for its source/attribution


Nobel Prize for Biological Clock Mechanisms

The Nobel Assembly at Karolinska Institutet has today decided to award the 2017 Nobel Prize in Physiology or Medicine jointly to Jeffrey C. Hall, Michael Rosbash, and Michael W. Young for their discoveries of molecular mechanisms controlling the circadian rhythm.


Life on Earth is adapted to the rotation of our planet. For many years we have known that living organisms, including humans, have an internal, biological clock that helps them anticipate and adapt to the regular rhythm of the day. But how does this clock actually work? Jeffrey C. Hall, Michael Rosbash and Michael W. Young were able to peek inside our biological clock and elucidate its inner workings. Their discoveries explain how plants, animals and humans adapt their biological rhythm so that it is synchronized with the Earth's revolutions.

Using fruit flies as a model organism, this year's Nobel laureates isolated a gene that controls the normal daily biological rhythm. They showed that this gene encodes a protein that accumulates in the cell during the night, and is then degraded during the day. Subsequently, they identified additional protein components of this machinery, exposing the mechanism governing the self-sustaining clockwork inside the cell. We now recognize that biological clocks function by the same principles in cells of other multicellular organisms, including humans.

With exquisite precision, our inner clock adapts our physiology to the dramatically different phases of the day. The clock regulates critical functions such as behavior, hormone levels, sleep, body temperature and metabolism. Our wellbeing is affected when there is a temporary mismatch between our external environment and this internal biological clock, for example when we travel across several time zones and experience "jet lag". There are also indications that chronic misalignment between our lifestyle and the rhythm dictated by our inner timekeeper is associated with increased risk for various diseases.

Our inner clock

Most living organisms anticipate and adapt to daily changes in the environment. During the 18th century, the astronomer Jean Jacques d'Ortous de Mairan studied mimosa plants, and found that the leaves opened towards the sun during daytime and closed at dusk. He wondered what would happen if the plant was placed in constant darkness. He found that independent of daily sunlight the leaves continued to follow their normal daily oscillation (Figure 1). Plants seemed to have their own biological clock.

Other researchers found that not only plants, but also animals and humans, have a biological clock that helps to prepare our physiology for the fluctuations of the day. This regular adaptation is referred to as the circadian rhythm, originating from the Latin words circa meaning "around" and dies meaning "day". But just how our internal circadian biological clock worked remained a mystery.

Figure 1. An internal biological clock. The leaves of the mimosa plant open towards the sun during day but close at dusk (upper part). Jean Jacques d'Ortous de Mairan placed the plant in constant darkness (lower part) and found that the leaves continue to follow their normal daily rhythm, even without any fluctuations in daily light.

Identification of a clock gene

During the 1970's, Seymour Benzer and his student Ronald Konopka asked whether it would be possible to identify genes that control the circadian rhythm in fruit flies. They demonstrated that mutations in an unknown gene disrupted the circadian clock of flies. They named this gene period. But how could this gene influence the circadian rhythm?

This year's Nobel Laureates, who were also studying fruit flies, aimed to discover how the clock actually works. In 1984, Jeffrey Hall and Michael Rosbash, working in close collaboration at Brandeis University in Boston, and Michael Young at the Rockefeller University in New York, succeeded in isolating the period gene. Jeffrey Hall and Michael Rosbash then went on to discover that PER, the protein encoded by period, accumulated during the night and was degraded during the day. Thus, PER protein levels oscillate over a 24-hour cycle, in synchrony with the circadian rhythm.

A self-regulating clockwork mechanism

The next key goal was to understand how such circadian oscillations could be generated and sustained. Jeffrey Hall and Michael Rosbash hypothesized that the PER protein blocked the activity of the period gene. They reasoned that by an inhibitory feedback loop, PER protein could prevent its own synthesis and thereby regulate its own level in a continuous, cyclic rhythm (Figure 2A).

Figure 2B. A simplified illustration of the molecular components of the circadian clock.
Such a regulatory feedback mechanism explained how this oscillation of cellular protein levels emerged, but questions lingered. What controlled the frequency of the oscillations? Michael Young identified yet another gene, doubletime, encoding the DBT protein that delayed the accumulation of the PER protein. This provided insight into how an oscillation is adjusted to more closely match a 24-hour cycle.

The paradigm-shifting discoveries by the laureates established key mechanistic principles for the biological clock. During the following years other molecular components of the clockwork mechanism were elucidated, explaining its stability and function. For example, this year's laureates identified additional proteins required for the activation of the period gene, as well as for the mechanism by which light can synchronize the clock.

Keeping time on our human physiology

The biological clock is involved in many aspects of our complex physiology. We now know that all multicellular organisms, including humans, utilize a similar mechanism to control circadian rhythms. A large proportion of our genes are regulated by the biological clock and, consequently, a carefully calibrated circadian rhythm adapts our physiology to the different phases of the day (Figure 3). Since the seminal discoveries by the three laureates, circadian biology has developed into a vast and highly dynamic research field, with implications for our health and wellbeing.
Figure 3. The circadian clock anticipates and adapts our physiology to the different phases of the day. Our biological clock helps to regulate sleep patterns, feeding behavior, hormone release, blood pressure, and body temperature.

About the Nobel Laureates

Jeffrey C. Hall was born 1945 in New York, USA. He received his doctoral degree in 1971 at the University of Washington in Seattle and was a postdoctoral fellow at the California Institute of Technology in Pasadena from 1971 to 1973. He joined the faculty at Brandeis University in Waltham in 1974. In 2002, he became associated with University of Maine.

Michael Rosbash was born in 1944 in Kansas City, USA. He received his doctoral degree in 1970 at the Massachusetts Institute of Technology in Cambridge. During the following three years, he was a postdoctoral fellow at the University of Edinburgh in Scotland. Since 1974, he has been on faculty at Brandeis University in Waltham, USA.

Michael W. Young was born in 1949 in Miami, USA. He received his doctoral degree at the University of Texas in Austin in 1975. Between 1975 and 1977, he was a postdoctoral fellow at Stanford University in Palo Alto. From 1978, he has been on faculty at the Rockefeller University in New York.

What can we use from this in teaching undergraduate A&P?

  • When you discuss biological clocks and rhythms in your course, this could be a way to garner student interest—considering that this is a current and ongoing effort in science. I begin discussing this at the beginning of the course—when covering  homeostasis.

  • Consider using the annual Nobel Prize announcements as a springboard to discuss the process of scientific discovery. 

  • Consider mentioning the other major awards for scientific achievement and discuss what the judges seem to value most about scientific discoveries. The Nobel Prize is the one everyone has heard of, so it's a great place to start.

  • Use the Nobel Prizes (and other awards) over time as a way to keep students aware of the history of, and progress, of human biology. One could also address the global diversity of laureates.  Or the lack of other kinds of diversity among laureates.

  • The sources below are great places to find media for teaching and for great, pithy explanations of complex topics for a "beginner" audience like our A&P students.

  • Want to know more?

    Advanced information

    P-element transformation with period locus DNA restores rhythmicity to mutant, arrhythmic Drosophila melanogaster.

    • Zehring, W.A., Wheeler, D.A., Reddy, P., Konopka, R.J., Kyriacou, C.P., Rosbash, M., and Hall, J.C. (1984).  Cell 39, 369–376.
    • my-ap.us/2kkb5ze

    Restoration of circadian behavioural rhythms by gene transfer in Drosophila. 

    • Bargiello, T.A., Jackson, F.R., and Young, M.W. (1984). Nature 312, 752–754.
    • my-ap.us/2kmvMux

    Antibodies to the period gene product of Drosophila reveal diverse tissue distribution and rhythmic changes in the visual system.

    • Siwicki, K.K., Eastman, C., Petersen, G., Rosbash, M., and Hall, J.C. (1988).  Neuron 1, 141–150.
    • my-ap.us/2klDMvI

    Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels.

    • Hardin, P.E., Hall, J.C., and Rosbash, M. (1990).  Nature 343, 536–540.
    • my-ap.us/2knh2LS

    The period gene encodes a predominantly nuclear protein in adult Drosophila.

    • Liu, X., Zwiebel, L.J., Hinton, D., Benzer, S., Hall, J.C., and Rosbash, M. (1992).  J Neurosci 12, 2735–2744.
    • my-ap.us/2kngfuu

    Block in nuclear localization of period protein by a second clock mutation, timeless.

    • Vosshall, L.B., Price, J.L., Sehgal, A., Saez, L., and Young, M.W. (1994).  Science 263, 1606–1609.
    • my-ap.us/2kneqh8

    double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. 

    • Price, J.L., Blau, J., Rothenfluh, A., Abodeely, M., Kloss, B., and Young, M.W. (1998). Cell 94, 83–95.
    • my-ap.us/2kocqVJ

    Content: Adapted from press release at nobelprize.org 
    Illustrations: © The Nobel Committee for Physiology or Medicine. Illustrator: Mattias Karlén


    Why You Want Your A&P Students to Fail

    I want my students to fail. Of course I don't want them to fail the course, but I do want to give them a lot of opportunities to get things wrong as they learn new facts, apply new knowledge, and build their conceptual frameworks.

    Learning scientists have plenty of research that shows that failing to get things right at first, then correcting one's thinking by relearning forgotten facts and applying knowledge in better ways, strengthens mastery. And it reinforces long-term memory of facts—and long-term memory of how to solve problems.

    So I give my A&P students a lot of opportunities to fail. So that they can stop failing and be more consistent in succeeding.

    One way I do that is by using clickers—a student response system—during lectures, labs, and discussion. I do assign "participation points" for answering questions using this system in class, but I do not assign points based on whether the answers were correct or incorrect. I want them take risks—to fail sometimes.

    By failing to get something right on a "clicker question," they wake up to where their deficiencies in learning are. Then we work together to correct their knowledge. It's more likely that when they encounter a similar challenge later on in my course, they'll be in a better position to succeed.

    I also give my students a lot of opportunity to fail in taking online tests. In my courses, I give a lot of online tests that act primarily as formative assessments. That is tests that help them gain knowledge at the beginning of their learning and tell them how they are doing—not tests that primarily evaluate if they've succeeded at the end of their learning process (summative testing). Most of my summative testing is instead done in written exams.

    My frequent online tests do have grade points associated with them, but because multiple attempts are allowed, they have a built-in formative component. Because the questions are randomly drawn from question sets containing many items, each test attempt has different items—but is testing the same set of learning objectives. Students fail, then fail again, then succeed in such tests.

    Because those online tests are cumulative—testing over all prior concepts—they get continuous practice in retrieving and applying concepts. And ongoing opportunities to fail—then succeed. By the time we get to their midterm and final exams, they are ready to succeed.

    But wait! There's more.

    I also require my student to take pretests before they begin their online testing. The pretests come before any learning activity in a new unit. Thus, they have an initial opportunity to fail—and fail miserably—by taking a test on a new set of topics that they may have never seen before. Learning research—and my own experience—shows that such pretests really prime student learning. Maybe a miserable failure at the start gets our brains into a mode that helps us really figure out how to avoid such failure again!

    I realize that it may seem counterintuitive for either teachers or learners to embrace failure as desirable. But considering how we really learn—by falling, then getting up and trying again—it makes a lot of sense. And the science of learning backs up this approach.

    What can we use from this in teaching undergraduate A&P?

    • Consider adding opportunities for students to fail early in their learning by using low-stakes or zero-stakes tests and quizzes.

    • Consider using clickers or mobile-based student response systems to embed questions in lectures, labs, group activities, and discussions.

    • Consider embedding quiz items in your pre-class "flipped" course materials.

    • Encourage students to test each other outside of class to give additional opportunities for failure. Flash cards, concept maps, and similar study activities also provide failure opportunities that enhance learning.

    Want to know more?

    Small Teaching: Everyday Lessons from the Science of Learning
    • James M. Lang, John Wiley & Sons, Feb 16, 2016 
    • Book that summarizes many different ideas about how to apply learning science to your courses, it gives practical advice and a lot of examples of how to do "small" things in your course to promote the kinds of failure that promote learning.
    • my-ap.us/2l1lfEr

    Failure is an Option: Helping Students Learn from Mistakes
    • John Orlando, PhD, Faculty Focus, 
      May 16, 2011
    • Brief column on the value of failure as a teaching tool. And mentions the idea that even the toughest teacher can have a class full of "A students" when we let them fail, then succeed.
    • my-ap.us/2twYZCW

    What is the difference between formative and summative assessment?
    • Carnegie Mellon University (Eberly Center | Teaching Excellence & Educational Innovation), accessed June 15, 2017
    • Brief webpage contrasting formative and summative assessment.
    • my-ap.us/2twHnqD

    Testing as a Learning Tool | UPDATE
    • Kevin Patton, The A&P Professor blog, May 19, 2015
    • My most recent post that further explains the testing methods mentioned above. With links to additional resources.
    • http://my-ap.us/1R7Tjpgmy-ap.us/1R7Tjpg

    Cumulative Testing Enhances Learning
    • Kevin Patton, The A&P Professor blog, September 5, 2016
    • Briefly explains my use of cumulative testing in A&P courses. With links to additional resources.
    • my-ap.us/2kydGBW

    Student Response Systems: Trying Clickers in Your Course
    • Kevin Patton, The A&P Professor website, accessed June 16, 2017
    • My weminar on using clickers in the A&P course. With links to additional resources.
    • my-ap.us/2twZIDM
    Top photo: Sigurd Decroos
    Middle photo: ilker

    Reboot of The A&P Professor Website

    Next time you head over to the companion website for this blog at theAPprofessor.org, you'll see a whole new website. Literally. The old website is enjoying a well-deserved rest on the beach of a sea of electrons, and a whole new—completely rebuilt—website has taken its place.

    Like rookie professors who replace veteran A&P professors, it still has a lot to learn. So I'm actively seeking your input on the kinds of things you'd like me to add or subtract from the website. Either comment on this blog post, or use the CONTACT form on the website.

    This new version of The A&P Professor retains a few of the design elements of the old one, like the Hip Logo. However, the website design is now "responsive" to allow resizing and rearrangement of page elements for easy viewing on any device—from desktop to pad to phone.

    I did a lot of pruning during the rebuild of The A&P Professor . I removed dated topics and book reviews, and the curated lists of websites and images. The latter just got out of hand for one guy with several "real" jobs, plus tending to a bunch of websites and blogs and a daily newsletter. When I started curating those collections, it was hard to find what we needed to teach A&P successfully—but now it's now much easier to find what you want on your own.

    The new website is now closely linked to another of my websites, the Lion Den. The Lion Den has also recently been rebuilt to focus entirely on the teaching and learning of human anatomy and physiology.

    So check out the Lion Den offerings as you explore the new The A&P Professor website! As always, I continue to appreciate your support!


    More Recent Articles

    Stay informed!

    Get a daily list of news headlines of Interest to A&P teachers:

    The A&P Professor Nuzzel Newsletter

    Want more teaching tips for A&P?

    Check out my blogs for users of my textbooks:

    Anatomy & Physiology

    Structure & Function of the Body

    The Human Body in Health & Disease

    Even if you use a different textbook, the tips and advice are interesting and helpful!

    Don't forget that your students can keep up with my study tips, shortcuts, and more on their own
    by subscribing to my blog The A&P Student.

    I have some handy (and bizarre) bookmarks giving students information about The A&P Student blog that you can distribute FREE to your classes!  Just go to my bookmark request page to get bookmarks for your students now.

    The handy Handbook of A&P           Check out the A&P Survival Guide! 

    Interested in learning how to handle issues in A&P terminology with style and ease?
    Want to know why meatus is both singular and plural?
    Do you crave to keep up with the latest fashion in using (or not using) eponyms?

    Try the o-log-y blog!

    Click here to safely unsubscribe from "The A&P Professor."
    Click here to view mailing archives, here to change your preferences, or here to subscribePrivacy